ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы дорожного контроля измерительные СДК.Ам

Назначение средства измерений

Системы дорожного контроля измерительные СДК.Ам (далее - системы) предназначены для:

- измерения осевых нагрузок и массы в движении или с остановкой порожних и груженых автодорожных колёсных транспортных средств, в том числе автопоездов, автоцистерн с жидкими грузами, включая сжиженные газы;
- статического взвешивания грузов, полностью размещаемых на грузоприемной платформе.

Описание средства измерений

Принцип действия систем основан на преобразовании деформаций упругих элементов датчиков, возникающих под действием нагрузки на грузоприемную платформу в цифровой электрический сигнал, пропорциональный измеряемой массе. Далее измерительная информация поступает в персональный компьютер (далее - ПК). На основании этой информации программное обеспечение (далее - ПО) систем вычисляет для каждой оси значения осевых нагрузок, а также значение массы взвешиваемых транспортных средств (далее – ТС). Результаты измерений и вспомогательная информация выводятся на экран монитора и сохраняются в памяти ПК.

Системы состоят из грузоприемного устройства (далее – ГПУ), блока питания ГПУ и ПК, соединенных с ГПУ кабельной электрической линией связи.

ГПУ размещается на специально подготовленной площадке или на отдельной полосе движения участка дороги с твердым покрытием (далее — зона весового контроля). ГПУ состоит из рамы, грузоприемной платформы, четырех цифровых весоизмерительных тензорезисторных датчиков ДВТ-10-Р (далее — датчики) с узлами встройки. Датчики имеют неразъемное соединение через соединительную коробку с блоком питания ГПУ и ПК. Блок питания ГПУ и ПК размещаются в отапливаемом помещении. Грузоприемная платформа подвешена внутри рамы на датчиках растяжения и может быть накрыта защитным металлополимерным настилом, края которого закреплены на неподвижной раме.

Системы выпускаются в модификациях с обозначением «СДК.Ам- X-Y-Z», где:

«Х» - определяет конструктивные особенности и принимает значения:

- «1» для ГПУ без защитного настила,
- «2» для ГПУ с металло-полимерным защитным настилом;
- «У» определяет требования к зоне весового контроля и принимает значения:
- «1» ГПУ установлены на специальных площадках и предназначены для статического измерения осевых нагрузок и массы неподвижных ТС, а также для автоматического измерения массы ТС в движении с ограничением скорости до 6 км/ч;
- \ll 2» ГПУ встроены непосредственно в дорогу и предназначены для автоматического измерения осевых нагрузок и массы ТС в движении с ограничением скорости до 90 км/ч.
- «Z» определяет наличие тех или иных сервисных устройств (по отдельному заказу), и может принимать значения и их сочетания:
- ${\rm «В»}-{\rm наличие}$ устройства видеонаблюдения и автоматической записи изображения ${\rm TC}$ в момент взвешивания,
 - «И» наличие устройства идентификации взвешиваемых ТС,
 - «У» наличие устройства автоматического управления движением ТС.

Общий вид встроенного непосредственно в дорогу ГПУ системы с металлополимерным защитным настилом показан на Рисунке 1

Рисунок 1 — Общий вид встроенного непосредственно в дорогу ГПУ системы с металло-полимерным защитным настилом

Программное обеспечение

ПО систем функционально делится на метрологически значимую и незначимую части. Метрологически значимая часть осуществляет обработку измерительной информации, сохранение результатов юстировки и измерений в базе данных. В состав метрологически значимой части ПО входят подпрограммы защиты результатов юстировки и измерительной информации, включая защиту при передаче информации в базу данных. Метрологически значимая часть ПО формирует управляющие сигналы для метрологически незначимой части ПО, которая осуществляет взаимодействие с сервисными устройствами.

Системы обеспечивают выполнение функций:

- автоматической установки нуля и слежения за нулем;
- определения направления движения ТС через ГПУ;
- автоматического формирования базы данных результатов измерений движущихся в потоке TC с фиксацией даты и времени проезда.

По дополнительному заказу системы могут быть оснащены устройствами:

- видеонаблюдения и автоматической записи изображения TC в момент взвешивания;
 - идентификации взвешиваемых ТС;
- автоматического управления движением TC с помощью светофоров и громкой связи.

При запуске ПО выполняется проверка целостности и подлинности метрологически значимой части. При нарушении целостности ПО, на монитор ПК выводится сообщение о характере нарушений и работа систем блокируется. Юстировка систем возможна только при наличии пароля и специального электронного ключа. Все изменения юстировочных коэффициентов сохраняются в электронном журнале событий.

Идентификационные данные метрологически значимой части ПО отображаются на мониторе ПК во время работы программы в главном окне на вкладке «Идентификационные признаки ПО Системы» и соответствуют таблице 1.

Таблица 1

Наименование ПО	Идентификаци- онное наимено- вание ПО	Номер версии	Цифровой идентификатор ПО (контрольная сумма файла)	Алгоритм вычисления цифрового идентификатора ПО
M3ΠO Etalon	Etalon.dat	не применяется	DC0950C1	CRC32
МЗПО СДК.Ам	Hash_MZPO.dat	не применяется	6FB02B50	CRC32
ПО Klient	Klient_car.exe	$V.1.0.3.XX^{1)}$	CEBB97FC ²⁾	CRC32

Примечание: 1) XX — обозначение номера версии метрологически незначимой части ΠO ; 2) контрольная сумма файла Klient_car.exe может меняться при изменении версии метрологически незначимой части ΠO .

Защита от несанкционированного доступа к системам осуществляется программными средствами, а также опломбированием соединительной коробки, к которой подключены датчики.

Защита ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «С» согласно МИ 3286-2010.

Знак поверки в виде оттиска поверительного клейма наносится на пломбу на соединительной коробке. Знак поверки в виде наклейки и записи, заверенной подписью поверителя с нанесением оттиска поверительного клейма, размещается в разделе сведений о проведении поверок руководства по эксплуатации.

Схема пломбировки приведена на Рисунке 2.

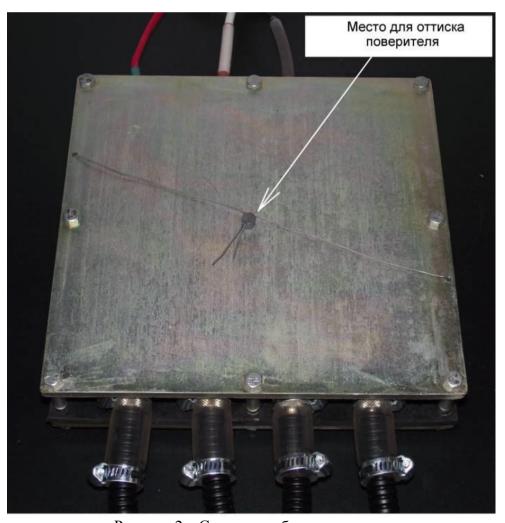


Рисунок 2 – Схема пломбировки систем

Метрологические и технические характеристики

1 Режим статического взвешивания различных грузов, полностью размещаемых на грузоприёмной платформе

Topological	
Наибольшая нагрузка, т	20
Наименьшая нагрузка, т	
Цена деления, т	0,02
Пределы допускаемой абсолютной погрешности при поверке, т	
в интервалах нагрузок, т:	
- от 1,5 до 10	$\pm 0,01$

- свыше 10 до 20±0,02

В эксплуатации пределы допускаемой абсолютной погрешности удваиваются.

Пределы допускаемой относительной погрешности измерений осевых нагрузок неподвижных TC представлены в таблице 2

Таблина 2

В интервалах осевых нагрузок (N), т	Пределы допускаемой относительной погрешности измерений осевых нагрузок неподвижных ТС, % от измеренного значения для модификаций		
	СДК.Ам-Х-1	СДК.Ам-Х-2	
$6 < N \le 20$	±1	±2	
$3 < N \le 6$	±2	±3	
$1,5 \le N \le 3$	±4	±4	

где: *N* – измеренное значение осевой нагрузки TC

3 Режим измерений массы неподвижных ТС

1 ' '	
Наибольшее число осей TC (n), шт	16
Наибольшая масса ТС, т	
Наименьшая масса ТС, т	3
Цена деления, т	0,02
	<i>'</i>

Пределы допускаемой относительной погрешности измерений массы неподвижных TC в зависимости от расчетного значения относительной погрешности массы TC представлены в таблице 3.

Таблица 3

В зависимости от расчетного значения	Пределы допускаемой относительной погреш-
относительной погрешности массы ТС	ности измерений массы неподвижных ТС, % от
$(\delta_{\scriptscriptstyle M})$, % от измеренного значения	измеренного значения
$\delta_{\rm M} \leq 1$	±1
$1 < \delta_{\scriptscriptstyle M} \le 2$	±2
$2 < \delta_{\scriptscriptstyle M} \leq 3$	±3

где: $\delta_{\text{м}}$ – расчетное значение относительной погрешности массы TC, автоматически вычисляемое ПО, в зависимости от значений измеренных осевых нагрузок TC.

4 Режим	измерений	осевых	нагрузок	ТС в	лвижении

	-	• •	
Наибольшая	осевая нагрузка,	T	20
		T	
Наибольшее	число осей TC (п	n), шт	16
Цена лелени	Я. Т		

4.1 Взвешивание ТС в движении со скоростью в интервале от 1 до 6 км/ч

Таблица 5

В зависимости от коэффициента	Пределы допускаемой относительной погрешности
неравномерности движения (кнер), в	измерений осевых нагрузок ТС, % от измеренного
условных единицах	значения
$\kappa_{\text{Hep}} \leq 4$	±4
$4 < \kappa_{\text{Hep}} \le 8$	±8
$8 < \kappa_{\text{Hep}} \le 16$	±16
$16 < \kappa_{\text{Hep}}$	не нормируются

где: $\kappa_{\text{нер}}$ — здесь и далее расчетное значение коэффициента неравномерности движения, автоматически вычисляемое ПО, в зависимости от неравномерности движения и собственных колебаний TC.

Таблина 6

T WOMING O			
В зависимости от коэф-	Пределы допускаемой относительной погрешности измерений		
фициента неравномерно-	осевых нагрузок ТС, % от измеренного значения для модифи-		
сти движения (кнер), в	каций		
условных единицах	СДК.Ам-Х-1	СДК.Ам-Х-2	
$\kappa_{\text{Hep}} \leq 2$	±2	±3	
$2 < \kappa_{\text{Hep}} \le 4$	±4	±4	
$4 < \kappa_{\text{Hep}} \le 8$	±8	±8	
$8 < \kappa_{\text{Hep}} \le 16$	±16	±16	
$16 < \kappa_{\text{Hep}}$	не нормі	ируется	

Таблица 7

В зависимости от коэф-	Пределы допускаемой относительной погрешности измерений		
фициента неравномерно-	осевых нагрузок ТС, % от измеренного значения для модифи-		
сти движения (кнер), в	каций		
условных единицах	СДК.Ам-Х-1	СДК.Ам-Х-2	
$\kappa_{\text{Hep}} \leq 1$	±1	±2	
$1 < \kappa_{\text{Hep}} \le 2$	±2	±3	
$2 < \kappa_{\text{Hep}} \le 4$	±4	±4	
$4 < \kappa_{\text{Hep}} \le 8$	±8	±8	
$8 < \kappa_{\text{Hep}} \le 16$	±16	±16	
$16 < \kappa_{\text{Hep}}$	не нормируется		

4.2 Взвешивание ТС в движении со скоростью в интервале свыше 6 до 20 км/ч

Пределы допускаемой относительной погрешности измерений осевых нагрузок в интервале скоростей свыше 6 до 20 км/ч, в зависимости от коэффициента неравномерности движения представлены в таблице 8.

Таблица 8

В зависимости от коэффициента	Пределы допускаемой относительной погрешности из-
неравномерности движения	мерений осевых нагрузок ТС в интервале скоростей
(к _{нер}), в условных единицах	свыше 6 до 20 км/ч, % от измеренного значения ТС
$\kappa_{\text{Hep}} \leq 8$	±8
$8 < \kappa_{\text{Hep}} \le 16$	±16
$16 < \kappa_{\text{Hep}}$	не нормируется

4.3 Взвешивание ТС в движении со скоростью в интервале свыше 20 до 90 км/ч Пределы допускаемой относительной погрешности измерений осевых нагрузок ТС в движении в интервале скоростей свыше 20 до 90 км/ч при коэффициенте неравномерности движения $\kappa_{\text{нер}} \leq 16$ $\pm 16\%$ от измеренного значения.

При коэффициенте неравномерности движения $\kappa_{\text{нер}} > 16$ пределы допускаемой относительной погрешности измерений осевых нагрузок TC не нормируются.

5 Режим измерений массы ТС в движении

Наибольшее число осей ТС (n), шт	16
Наибольшая масса ТС, т	
Наименьшая масса ТС, т	3
Цена деления, т	0,02

Пределы допускаемой относительной погрешности измерения массы TC в движении в зависимости от расчетного значения относительной погрешности массы TC представлены в таблице 9

Таблица 9

В зависимости от расчетного значения от-	Пределы допускаемой относительной по-		
носительной погрешности массы ТС $(\delta_{\scriptscriptstyle M})$,	грешности измерений массы ТС в движении,		
% от измеренного значения	% от измеренного значения		
$\delta_{\rm M} \leq 1$	±1		
$1 < \delta_{\scriptscriptstyle M} \le 2$	±2		
$2 < \delta_{\scriptscriptstyle M} \le 3$	±3		
$3 < \delta_{\rm M} \le 7$	±7		
$7 < \delta_{\text{M}} \le 10$	±10		
$10 < \delta_{\scriptscriptstyle M} \le 15$	±15		

где: $\delta_{\rm M}$ — расчетное значение относительной погрешности массы TC, автоматически вычисляемое ПО, в зависимости от значений измеренных осевых нагрузок TC с учётом их погрешностей.

6 Режим измерений расстояний между смежными осями TC в движении со скоростью в интервале свыше 6 до 90 км/ч

Наибольшее расстояние, м	15
Наименьшее расстояние, м	
Цена деления, м	

Пределы допускаемой относительной погрешности измерений расстояний между смежными осями одиночного TC, % от действительного значения ±4%.

Для автопоездов и сочлененных TC пределы допускаемой относительной погрешности измерений расстояний между последней осью тягача и первой осью прицепа (полу-

прицепа) возрастают на величину относительного люфта в сцепных устройствах.

Погрешность измерений расстояний между смежными осями TC в движении со скоростью в интервале от 1 до 6 км/ч не нормируется.

7 Общие характеристики для всех модификаций и всех режимов работы систем				
Наибольшая скорость ТС при взвешивании, км/ч 90				
Наименьшая скорость ТС при взвешивании, км/ч 1				
Погрешность измерений скорости ТС не нормируется				
Диапазон рабочих температур, ⁰ C:				
- для ГПУ и линии связи	от минус 40 до плюс 50			
- для ПК и периферийного оборудования	от плюс 15 до плюс 30			
Время готовности, мин	30			
Электрическое питание от сети переменного тока:				
- напряжение, В	от 187 до 242			
- частота, Гц	от 49 до 51			
Размеры грузоприемной платформы, мм, не более	4000x1000			
Длина кабельной линии, м	до 1000			

Знак утверждения типа

Знак утверждения типа наносится графическим способом на маркировочную табличку, расположенную в приборном отсеке грузоприёмного устройства и штемпелем на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Система	1 шт.
Устройство видеонаблюдения и автоматической записи изображения	1 шт.
ТС, шт. (по дополнительному заказу)	
Устройство автоматической идентификации ТС, шт. (по дополнитель-	1 шт.
ному заказу)	
Устройство автоматического управления движением ТС, шт. (по	1 шт.
дополнительному заказу)	
Руководство по эксплуатации	1 экз.
Методика поверки	1 экз.

Поверка

осуществляется в соответствии с документом МИ 3410-2013 «Рекомендации ГСИ «Системы дорожного контроля измерительные СДК.Ам. Методика поверки», утвержденным ГЦИ СИ Φ ГУП «ВНИИМС» 20 июня 2013 г.

Основные средства поверки:

- гири, соответствующие классу точности M_{1-2} по ГОСТ OIML R 111-1-2009.

Сведения о методиках (методах) измерений

Изложены в СДК.Ам-01.000.000 РЭ «Система дорожного контроля измерительная СДК.Ам. Руководство по эксплуатации» в разделе «Использование по назначению»

Нормативные и технические документы, устанавливающие требования к Системам дорожного контроля измерительным СДК.Ам

ГОСТ 8.021-05 «ГСИ. Государственная поверочная схема для средств измерения массы»,

ТУ 4274-005-49804336-2013 «Система дорожного контроля измерительная СДК.Ам. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

при осуществлении мероприятий государственного контроля (надзора) в части измерений массы автотранспортного средства (приказ Министерства внутренних дел Российской Федерации от 8 ноября 2012 г. № 1014);

при осуществлении торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью научно-исследовательская и производственно-внедренческая фирма (ООО НИПВФ «Тензор»),

Адрес: 344058, Россия, г. Ростов-на-Дону, ул. 2-я Краснодарская, 129,

тел./факс: 8 (863) 218 5580, 218 5591, 218 5583.

E-mail: tenzor@ms.math.rsu.ru. Web: http://tenzor.math.rsu.ru.

Испытатель

ГЦИ СИ ФГУП «ВНИИМС»

Аттестат аккредитации № 30004-08

Адрес: 119361, г. Москва, ул. Озерная, д. 46, Тел.: (495) 437 5577, факс: (495) 437 5666,

E-mail: Office@vniims.ru,

www. vniims.ru

Заместитель Руководителя				
Федерального агентства				
по техническому регулировани	Ю			
и метрологии				Ф.В. Булыгин
	М. П.	~ <	>>	2013 г